One Shot, Few Shot, Radical Shot

Exunoplura is back up after a sad excursion through the challenges of hosting providers. To be blunt, they mostly suck. Between systems that just don’t work right (SSL certificate provisioning in this case) and bad to counterproductive support experiences, it’s enough to make one want to host it oneself. But hosting is mostly, as they say of war, long boring periods punctuated by moments of terror as things go frustratingly sideways. But we are back up again after two hosting provider side-trips!

Honestly, I’d like to see an AI agent effectively navigate through these technological challenges. Where even human performance is fleeting and imperfect, the notion that an AI could learn how to deal with the uncertain corners of the process strikes me as currently unthinkable. But there are some interesting recent developments worth noting and discussing in the journey towards what is named “general AI” or a framework that is as flexible as people can be, rather than narrowly tied to a specific task like visually inspecting welds or answering a few questions about weather, music, and so forth.

First, there is the work by the OpenAI folks on massive language models being tested against one-shot or few-shot learning problems. In each of these learning problems, the number of presentations of the training data cases is limited, rather than presenting huge numbers of exemplars and “fine tuning” the response of the model. What is a language model? Well, it varies across different approaches, but typically is a weighted context of words of varying length, with the weights reflecting the probabilities of those words in those contexts over a massive collection of text corpora. For the OpenAI model, GPT-3, the total number of parameters (words/contexts and their counts) is an astonishing 175 billion using 45 Tb of text to train the model.… Read the rest

The Abnormal Normal

Another day, another COVID-19 conspiracy theory making the rounds. First there was the Chinese bioweapons idea, then the 5G radiation theory that led to tower vandalism, and now the Plandemic video. Washington Post covers the latter while complaining that tech companies are incompetently ineffectual in stopping the spread of these mind viruses that accompany the biological ones. Meanwhile, a scientist who appears in the video is reviewed and debunked in AAAS Science based on materials she provided them. I’m still interested in these “sequences” in the Pacific Ocean. I’ve spent some time in there and may need to again.

The WaPo article ends with a suggestion that we all need to be more skeptical of dumb shit, though I’m guessing that that message will probably not reach the majority of believers or propagators of Plandemic-style conspiracy thinking. So it goes with all the other magical nonsense that percolates through our ordinary lives, confined as they are to only flights of fancy and hopeful aspirations for a better world.

Broadly, though, it does appear that susceptibility to conspiracy theories correlates with certain mental traits that linger at the edge of mental illnesses. Evita March and Jordan Springer got 230 mostly undergraduate students to answer online questionnaires that polled them on mental traits of schizotypy, Machiavellianism, trait narcissism, and trait psychopathy. They also evaluated their belief in odd/magical ideas. Their paper, Belief in conspiracy theories: The predictive role of schizotypy, Machiavellianism, and primary psychopathy, shows significant correlations with belief in conspiracies. Interestingly, they suggest that the urge to manipulate others in Machiavellianism and psychopathy may, in turn, lead to an innate fear of being manipulated oneself.

Mental illness and certain psychological traits have always been a bit of an evolutionary mystery.… Read the rest

Forever Uncanny

Quanta has a fair round up of recent advances in deep learning. Most interesting is the recent performance on natural language understanding tests that are close to or exceed mean human performance. Inevitably, John Searle’s Chinese Room argument is brought up, though the author of the Quanta article suggests that inferring the Chinese translational rule book from the data itself is slightly different from the original thought experiment. In the Chinese Room there is a person who knows no Chinese but has a collection of translational reference books. She receives texts through a slot and dutifully looks up the translation of the text and passes out the result. “Is this intelligence?” is the question and it serves as a challenge to the Strong AI hypothesis. With statistical machine translation methods (and their alternative mechanistic implementation, deep learning), the rule books have been inferred by looking at translated texts (“parallel” texts as we say in the field). By looking at a large enough corpus of parallel texts, greater coverage of translated variants is achieved as well as some inference of pragmatic issues in translation and corner cases.

As a practical matter, it should be noted that modern, professional translators often use translation memory systems that contain idiomatic—or just challenging—phrases that they can reference when translating new texts. The understanding resides in the original translator’s head, we suppose, and in the correct application of the rule to the new text by checking for applicability according to, well, some other criteria that the translator brings to bear on the task.

In the General Language Understand Evaluation (GLUE) tests described in the Quanta article, the systems are inferring how to answer Wh-style queries (who, what, where, when, and how) as well as identify similar texts.… Read the rest

Bereitschaftspotential and the Rehabilitation of Free Will

The question of whether we, as people, have free will or not is both abstract and occasionally deeply relevant. We certainly act as if we have something like libertarian free will, and we have built entire systems of justice around this idea, where people are responsible for choices they make that result in harms to others. But that may be somewhat illusory for several reasons. First, if we take a hard deterministic view of the universe as a clockwork-like collection of physical interactions, our wills are just a mindless outcome of a calculation of sorts, driven by a wetware calculator with a state completely determined by molecular history. Second, there has been, until very recently, some experimental evidence that our decision-making occurs before we achieve a conscious realization of the decision itself.

But this latter claim appears to be without merit, as reported in this Atlantic article. Instead, what was previously believed to be signals of brain activity that were related to choice (Bereitschaftspotential) may just be associated with general waves of neural activity. The new experimental evidence puts the timing of action in line with conscious awareness of the decision. More experimental work is needed—as always—but the tentative result suggests a more tightly coupled pairing of conscious awareness with decision making.

Indeed, the results of this newer experimental result gets closer to my suggested model of how modular systems combined with perceptual and environmental uncertainty can combine to produce what is effectively free will (or at least a functional model for a compatibilist position). Jettisoning the Chaitin-Kolmogorov complexity part of that argument and just focusing on the minimal requirements for decision making in the face of uncertainty, we know we need a thresholding apparatus that fires various responses given a multivariate statistical topology.… Read the rest