Brain Gibberish with a Convincing Heart

Elon Musk believes that direct brain interfaces will help people better transmit ideas to one another in addition to just allowing thought-to-text generation. But there is a fundamental problem with this idea. Let’s take Hubert Dreyfus’ conception of the way meaning works as being tied to a more holistic view of our social interactions with others. Hilary Putnam would probably agree with this perspective, though now I am speaking for two dead philosphers of mind. We can certainly conclude that my mental states when thinking about the statement “snow is white” are, borrowing from Putnam who borrows from Quine, different from a German person thinking “Schnee ist weiß.” The orthography, grammar, and pronunciation are different to begin with. Then there is what seems to transpire when I think about that statement: mild visualizations of white snow-laden rocks above a small stream for instance, or, just now, Joni Mitchell’s “As snow gathers like bolts of lace/Waltzing on a ballroom girl.” The centrality or some kind of logical ground that merely asserts that such a statement is a propositional truth that is shared in some kind of mind interlingua doesn’t bear much fruit to the complexities of what such a statement entails.

Religious and political terminology is notoriously elastic. Indeed, for the former, it hardly even seems coherent to talk about the concept of supernatural things or events. If they are detectable by any other sense than some kind of unverifiable gnosis, then they are at least natural in that they are manifesting in the observable world. So supernatural imposes a barrier that seems to preclude any kind of discussion using ordinary language. The only thing left is a collection of metaphysical assumptions that, in lacking any sort of reference, must merely conform to the patterns of synonymy, metonymy, and other language games that we ordinarily reserve for discernible events and things.… Read the rest

The Obsessive Dreyfus-Hawking Conundrum

I’ve been obsessed lately. I was up at 5 A.M. yesterday and drove to Ruidoso to do some hiking (trails T93 to T92, if interested). The San Augustin Pass was desolate as the sun began breaking over, so I inched up into triple digit speeds in the M6. Because that is what the machine is made for. Booming across White Sands Missile Range, I recalled watching base police work with National Park Rangers to chase oryx down the highway while early F117s practiced touch-and-gos at Holloman in the background, and then driving my carpool truck out to the high energy laser site or desert ship to deliver documents.

I settled into Starbucks an hour and a half later and started writing on ¡Reconquista!, cranking out thousands of words before trying to track down the trailhead and starting on my hike. (I would have run the thing but wanted to go to lunch later and didn’t have access to a shower. Neither restaurant nor diners deserve an après-run moi.) And then I was on the trail and I kept stopping and taking plot and dialogue notes, revisiting little vignettes and annotating enhancements that I would later salt in to the main text over lunch. And I kept rummaging through the development of characters, refining and sifting the facts of their lives through different sets of sieves until they took on both a greater valence within the story arc and, often, more comedic value.

I was obsessed and remain so. It is a joyous thing to be in this state, comparable only to working on large-scale software systems when the hours melt away and meals slip as one cranks through problem after problem, building and modulating the subsystems until the units begin to sing together like a chorus.… Read the rest

Tweak, Memory

Artificial Neural Networks (ANNs) were, from early on in their formulation as Threshold Logic Units (TLUs) or Perceptrons, mostly focused on non-sequential decision-making tasks. With the invention of back-propagation training methods, the application to static presentations of data became somewhat fixed as a methodology. During the 90s Support Vector Machines became the rage and then Random Forests and other ensemble approaches held significant mindshare. ANNs receded into the distance as a quaint, historical approach that was fairly computationally expensive and opaque when compared to the other methods.

But Deep Learning has brought the ANN back through a combination of improvements, both minor and major. The most important enhancements include pre-training of the networks as auto-encoders prior to pursuing error-based training using back-propagation or  Contrastive Divergence with Gibbs Sampling. The critical other enhancement derives from Schmidhuber and others work in the 90s on managing temporal presentations to ANNs so the can effectively process sequences of signals. This latter development is critical for processing speech, written language, grammar, changes in video state, etc. Back-propagation without some form of recurrent network structure or memory management washes out the error signal that is needed for adjusting the weights of the networks. And it should be noted that increased compute fire-power using GPUs and custom chips has accelerated training performance enough that experimental cycles are within the range of doable.

Note that these are what might be called “computer science” issues rather than “brain science” issues. Researchers are drawing rough analogies between some observed properties of real neuronal systems (neurons fire and connect together) but then are pursuing a more abstract question as to how a very simple computational model of such neural networks can learn.… Read the rest

Desire and Other Matters

“What matters?” is a surprisingly interesting question. I think about it constantly since it weighs-in whenever plotting future choices, though often I seem to be more autopilot than consequentialist in these conceptions. It is an essential first consideration when trying to value one option versus another. I can narrow the question a bit to “what ideas matter?” This immediately externalizes the broad reality of actions that meaningfully improve lives, like helping others, but still leaves a solid core of concepts that are valued more abstractly. Does the traditional Western liberal tradition really matter? Do social theories? Are less intellectually-embellished virtues like consistency and trust more relevant and applicable than notions like, well, consequentialism?

Maybe it amounts to how to value certain intellectual systems against others?

Some are obviously more true than others. So “dowsing belief systems” are less effective in a certain sense than “planetary science belief systems.” Yet there are a broader range of issues at work.

But there are some areas of the liberal arts that have a vexing relationship with the modern mind. Take linguistics. The field ranges from catalogers of disappearing languages to theorists concerned with how to structure syntactic trees. Among the latter are the linguists who have followed Noam Chomsky’s paradigm that explains language using a hierarchy of formal syntactic systems, all of which feature recursion as a central feature. What is interesting is that there have been very few impacts of this theory. It is very simple at its surface: languages are all alike and involve phrasal groups that embed in deep hierarchies. The specific ways in which the phrases and their relative embeddings take place may differ among languages, but they are alike in this abstract way.… Read the rest

Subtly Motivating Reasoning

larson-sheepContinuing on with the general theme of motivated reasoning, there are some rather interesting results reported in New Republic, here. Specifically, Ian Anson from University of Maryland, Baltimore County, found that political partisans reinforced their perspectives on the state of the U.S. economy more strongly when they were given “just the facts” rather than a strong partisan statement combined with the facts. Even when the partisan statements aligned with their own partisan perspectives, the effect held.

The author concludes that people, in constructing their views of the causal drivers of the economy, believe that they are unbiased in their understanding of the underlying mechanisms. The barefaced partisan statements interrupt that construction process, perhaps, or at least distract from it. Dr. Anson points out that subtly manufacturing consent therefore makes for better partisan fellow travelers.

There are a number of theories concerning how meanings must get incorporated into our semantic systems, and whether the idea of meaning itself is as good or worse than simply discussing reference. More, we can rate or gauge the uncertainty we must have concerning complex systems. They seem to form a hierarchy, with actors in our daily lives and the motivations of those we have long histories with in the mostly-predictable camp. Next we may have good knowledge about a field or area of interest that we have been trained in. When this framework has a scientific basis, we also rate our knowledge as largely reliable, but we also know the limits of that knowledge. It is in predictive futures and large-scale policy that we become subject to the difficulty of integrating complex signals into a cohesive framework. The partisans supply factoids and surround them with causal reasoning.… Read the rest

Euhemerus and the Bullshit Artist

trump-minotaurSailing down through the Middle East, past the monuments of Egypt and the wild African coast, and then on into the Indian Ocean, past Arabia Felix, Euhemerus came upon an island. Maybe he came upon it. Maybe he sailed. He was perhaps—yes, perhaps; who can say?—sailing for Cassander in deconstructing the memory of Alexander the Great. And that island, Panchaea, held a temple of Zeus with a written history of the deeds of men who became the Greek gods.

They were elevated, they became fixed in the freckled amber of ancient history, their deeds escalated into myths and legends. And, likewise, the ancient tribes of the Levant brought their El and Yah-Wah, and Asherah and Baal, and then the Zoroastrians influenced the diaspora in refuge in Babylon, until they returned and had found dualism, elemental good and evil, and then reimagined their origins pantheon down through monolatry and into monotheism. These great men and women were reimagined into something transcendent and, ultimately, barely understandable.

Even the rational Yankee in Twain’s Connecticut Yankee in King Arthur’s Court realizes almost immediately why he would soon rule over the medieval world as he is declared a wild dragon when presented to the court. He waits for someone to point out that he doesn’t resemble a dragon, but the medieval mind does not seem to question the reasonableness of the mythic claims, even in the presence of evidence.

So it goes with the human mind.

And even today we have Fareed Zakaria justifying his use of the term “bullshit artist” for Donald Trump. Trump’s logorrhea is punctuated by so many incomprehensible and contradictory statements that it becomes a mythic whirlwind. He lets slip, now and again, that his method is deliberate:

DT: Therefore, he was the founder of ISIS.

Read the rest

Motivation, Boredom, and Problem Solving

shatteredIn the New York Times Stone column, James Blachowicz of Loyola challenges the assumption that the scientific method is uniquely distinguishable from other ways of thinking and problem solving we regularly employ. In his example, he lays out how writing poetry involves some kind of alignment of words that conform to the requirements of the poem. Whether actively aware of the process or not, the poet is solving constraint satisfaction problems concerning formal requirements like meter and structure, linguistic problems like parts-of-speech and grammar, semantic problems concerning meaning, and pragmatic problems like referential extension and symbolism. Scientists do the same kinds of things in fitting a theory to data. And, in Blachowicz’s analysis, there is no special distinction between scientific method and other creative methods like the composition of poetry.

We can easily see how this extends to ideas like musical composition and, indeed, extends with even more constraints that range from formal through to possibly the neuropsychology of sound. I say “possibly” because there remains uncertainty on how much nurture versus nature is involved in the brain’s reaction to sounds and music.

In terms of a computational model of this creative process, if we presume that there is an objective function that governs possible fits to the given problem constraints, then we can clearly optimize towards a maximum fit. For many of the constraints there are, however, discrete parameterizations (which part of speech? which word?) that are not like curve fitting to scientific data. In fairness, discrete parameters occur there, too, especially in meta-analyses of broad theoretical possibilities (Quantum loop gravity vs. string theory? What will we tell the children?) The discrete parameterizations blow up the search space with their combinatorics, demonstrating on the one hand why we are so damned amazing, and on the other hand why a controlled randomization method like evolutionary epistemology’s blind search and selective retention gives us potential traction in the face of this curse of dimensionality.… Read the rest

Quantum Field Is-Oughts

teleologySean Carroll’s Oxford lecture on Poetic Naturalism is worth watching (below). In many ways it just reiterates several common themes. First, it reinforces the is-ought barrier between values and observations about the natural world. It does so with particular depth, though, by identifying how coarse-grained theories at different levels of explanation can be equally compatible with quantum field theory. Second, and related, he shows how entropy is an emergent property of atomic theory and the interactions of quantum fields (that we think of as particles much of the time) and, importantly, that we can project the same notion of boundary conditions that result in entropy into the future resulting in a kind of effective teleology. That is, there can be some boundary conditions for the evolution of large-scale particle systems that form into configurations that we can label purposeful or purposeful-like. I still like the term “teleonomy” to describe this alternative notion, but the language largely doesn’t matter except as an educational and distinguishing tool against the semantic embeddings of old scholastic monks.

Finally, the poetry aspect resolves in value theories of the world. Many are compatible with descriptive theories, and our resolution of them is through opinion, reason, communications, and, yes, violence and war. There is no monopoly of policy theories, religious claims, or idealizations that hold sway. Instead we have interests and collective movements, and the above, all working together to define our moral frontiers.

 … Read the rest

New Behaviorism and New Cognitivism

lstm_memorycellDeep Learning now dominates discussions of intelligent systems in Silicon Valley. Jeff Dean’s discussion of its role in the Alphabet product lines and initiatives shows the dominance of the methodology. Pushing the limits of what Artificial Neural Networks have been able to do has been driven by certain algorithmic enhancements and the ability to process weight training algorithms at much higher speeds and over much larger data sets. Google even developed specialized hardware to assist.

Broadly, though, we see mostly pattern recognition problems like image classification and automatic speech recognition being impacted by these advances. Natural language parsing has also recently had some improvements from Fernando Pereira’s team. The incremental improvements using these methods should not be minimized but, at the same time, the methods don’t emulate key aspects of what we observe in human cognition. For instance, the networks train incrementally and lack the kinds of rapid transitions that we observe in human learning and thinking.

In a strong sense, the models that Deep Learning uses can be considered Behaviorist in that they rely almost exclusively on feature presentation with a reward signal. The internal details of how modularity or specialization arise within the network layers are interesting but secondary to the broad use of back-propagation or Gibb’s sampling combined with autoencoding. This is a critique that goes back to the early days of connectionism, of course, and why it was somewhat sidelined after an initial heyday in the late eighties. Then came statistical NLP, then came hybrid methods, then a resurgence of corpus methods, all the while with image processing getting more and more into the hand-crafted modular space.

But we can see some interesting developments that start to stir more Cognitivism into this stew.… Read the rest

Evolving Visions of Chaotic Futures

FlutterbysMost artificial intelligence researchers think unlikely the notion that a robot apocalypse or some kind of technological singularity is coming anytime soon. I’ve said as much, too. Guessing about the likelihood of distant futures is fraught with uncertainty; current trends are almost impossible to extrapolate.

But if we must, what are the best ways for guessing about the future? In the late 1950s the Delphi method was developed. Get a group of experts on a given topic and have them answer questions anonymously. Then iteratively publish back the group results and ask for feedback and revisions. Similar methods have been developed for face-to-face group decision making, like Kevin O’Connor’s approach to generating ideas in The Map of Innovation: generate ideas and give participants votes equaling a third of the number of unique ideas. Keep iterating until there is a consensus. More broadly, such methods are called “nominal group techniques.”

Most recently, the notion of prediction markets has been applied to internal and external decision making. In prediction markets,  a similar voting strategy is used but based on either fake or real money, forcing participants towards a risk-averse allocation of assets.

Interestingly, we know that optimal inference based on past experience can be codified using algorithmic information theory, but the fundamental problem with any kind of probabilistic argument is that much change that we observe in society is non-linear with respect to its underlying drivers and that the signals needed are imperfect. As the mildly misanthropic Nassim Taleb pointed out in The Black Swan, the only place where prediction takes on smooth statistical regularity is in Las Vegas, which is why one shouldn’t bother to gamble.… Read the rest