Motivation, Boredom, and Problem Solving

shatteredIn the New York Times Stone column, James Blachowicz of Loyola challenges the assumption that the scientific method is uniquely distinguishable from other ways of thinking and problem solving we regularly employ. In his example, he lays out how writing poetry involves some kind of alignment of words that conform to the requirements of the poem. Whether actively aware of the process or not, the poet is solving constraint satisfaction problems concerning formal requirements like meter and structure, linguistic problems like parts-of-speech and grammar, semantic problems concerning meaning, and pragmatic problems like referential extension and symbolism. Scientists do the same kinds of things in fitting a theory to data. And, in Blachowicz’s analysis, there is no special distinction between scientific method and other creative methods like the composition of poetry.

We can easily see how this extends to ideas like musical composition and, indeed, extends with even more constraints that range from formal through to possibly the neuropsychology of sound. I say “possibly” because there remains uncertainty on how much nurture versus nature is involved in the brain’s reaction to sounds and music.

In terms of a computational model of this creative process, if we presume that there is an objective function that governs possible fits to the given problem constraints, then we can clearly optimize towards a maximum fit. For many of the constraints there are, however, discrete parameterizations (which part of speech? which word?) that are not like curve fitting to scientific data. In fairness, discrete parameters occur there, too, especially in meta-analyses of broad theoretical possibilities (Quantum loop gravity vs. string theory? What will we tell the children?) The discrete parameterizations blow up the search space with their combinatorics, demonstrating on the one hand why we are so damned amazing, and on the other hand why a controlled randomization method like evolutionary epistemology’s blind search and selective retention gives us potential traction in the face of this curse of dimensionality.… Read the rest

Local Minima and Coatimundi

CoatimundiEven given the basic conundrum of how deep learning neural networks might cope with temporal presentations or linear sequences, there is another oddity to deep learning that only seems obvious in hindsight. One of the main enhancements to traditional artificial neural networks is a phase of supervised pre-training that forces each layer to try to create a generative model of the input pattern. The deep learning networks then learn a discriminant model after the initial pre-training is done, focusing on the error relative to classification versus simply recognizing the phrase or image per se.

Why this makes a difference has been the subject of some investigation. In general, there is an interplay between the smoothness of the error function and the ability of the optimization algorithms to cope with local minima. Visualize it this way: for any machine learning problem that needs to be solved, there are answers and better answers. Take visual classification. If the system (or you) gets shown an image of a coatimundi and a label that says coatimundi (heh, I’m running in New Mexico right now…), learning that image-label association involves adjusting weights assigned to different pixels in the presentation image down through multiple layers of the network that provide increasing abstractions about the features that define a coatimundi. And, importantly, that define a coatimundi versus all the other animals and non-animals.,

These weight choices define an error function that is the optimization target for the network as a whole, and this error function can have many local minima. That is, by enhancing the weights supporting a coati versus a dog or a raccoon, the algorithm inadvertently leans towards a non-optimal assignment for all of them by focusing instead on a balance between them that is predestined by the previous dog and raccoon classifications (or, in general, the order of presentation).… Read the rest

New Behaviorism and New Cognitivism

lstm_memorycellDeep Learning now dominates discussions of intelligent systems in Silicon Valley. Jeff Dean’s discussion of its role in the Alphabet product lines and initiatives shows the dominance of the methodology. Pushing the limits of what Artificial Neural Networks have been able to do has been driven by certain algorithmic enhancements and the ability to process weight training algorithms at much higher speeds and over much larger data sets. Google even developed specialized hardware to assist.

Broadly, though, we see mostly pattern recognition problems like image classification and automatic speech recognition being impacted by these advances. Natural language parsing has also recently had some improvements from Fernando Pereira’s team. The incremental improvements using these methods should not be minimized but, at the same time, the methods don’t emulate key aspects of what we observe in human cognition. For instance, the networks train incrementally and lack the kinds of rapid transitions that we observe in human learning and thinking.

In a strong sense, the models that Deep Learning uses can be considered Behaviorist in that they rely almost exclusively on feature presentation with a reward signal. The internal details of how modularity or specialization arise within the network layers are interesting but secondary to the broad use of back-propagation or Gibb’s sampling combined with autoencoding. This is a critique that goes back to the early days of connectionism, of course, and why it was somewhat sidelined after an initial heyday in the late eighties. Then came statistical NLP, then came hybrid methods, then a resurgence of corpus methods, all the while with image processing getting more and more into the hand-crafted modular space.

But we can see some interesting developments that start to stir more Cognitivism into this stew.… Read the rest

Evolving Visions of Chaotic Futures

FlutterbysMost artificial intelligence researchers think unlikely the notion that a robot apocalypse or some kind of technological singularity is coming anytime soon. I’ve said as much, too. Guessing about the likelihood of distant futures is fraught with uncertainty; current trends are almost impossible to extrapolate.

But if we must, what are the best ways for guessing about the future? In the late 1950s the Delphi method was developed. Get a group of experts on a given topic and have them answer questions anonymously. Then iteratively publish back the group results and ask for feedback and revisions. Similar methods have been developed for face-to-face group decision making, like Kevin O’Connor’s approach to generating ideas in The Map of Innovation: generate ideas and give participants votes equaling a third of the number of unique ideas. Keep iterating until there is a consensus. More broadly, such methods are called “nominal group techniques.”

Most recently, the notion of prediction markets has been applied to internal and external decision making. In prediction markets,  a similar voting strategy is used but based on either fake or real money, forcing participants towards a risk-averse allocation of assets.

Interestingly, we know that optimal inference based on past experience can be codified using algorithmic information theory, but the fundamental problem with any kind of probabilistic argument is that much change that we observe in society is non-linear with respect to its underlying drivers and that the signals needed are imperfect. As the mildly misanthropic Nassim Taleb pointed out in The Black Swan, the only place where prediction takes on smooth statistical regularity is in Las Vegas, which is why one shouldn’t bother to gamble.… Read the rest

The Linguistics of Hate

keep-calm-and-hate-corpus-linguisticsRight-wing authoritarianism (RWA) and Social dominance orientation (SDO) are measures of personality traits and tendencies. To measure them, you ask people to rate statements like:

Superior groups should dominate inferior groups

The withdrawal from tradition will turn out to be a fatal fault one day

People rate their opinions on these questions using a 1 to 5 scale from Definitely Disagree to Strongly Agree. These scales have their detractors but they also demonstrate some useful and stable reliability across cultures.

Note that while both of these measures tend to be higher in American self-described “conservatives,” they also can be higher for leftist authoritarians and they may even pop up for subsets of attitudes among Western social liberals about certain topics like religion. Haters abound.

I used the R packages twitterR, textminer, wordcloud, SnowballC, and a few others and grabbed a few thousand tweets that contained the #DonaldJTrump hashtag. A quick scan of them showed the standard properties of tweets like repetition through retweeting, heavy use of hashtags, and, of course, the use of the #DonaldJTrump as part of anti-Trump sentiments (something about a cocaine-use video). But, filtering them down, there were definite standouts that seemed to support a RWA/SDO orientation. Here are some examples:

The last great leader of the White Race was #trump #trump2016 #donaldjtrump #DonaldTrump2016 #donaldtrump”

Just a wuss who cant handle the defeat so he cries to GOP for brokered Convention. # Trump #DonaldJTrump

I am a PROUD Supporter of #DonaldJTrump for the Highest Office in the land. If you don’t like it, LEAVE!

#trump army it’s time, we stand up for family, they threaten trumps family they threaten us, lock and load, push the vote…

Not surprising, but the density of them shows a real aggressiveness that somewhat shocked me.… Read the rest

The Retiring Mind, Part III: Autonomy

Retiring Mind IIIRobert Gordon’s book on the end of industrial revolutions recently came out. I’ve been arguing for a while that the coming robot apocalypse might be Industrial Revolution IV. But the Dismal Science continues to point out uncomfortable facts in opposition to my suggestion.

So I had to test the beginning of the end (or the beginning of the beginning?) when my Tesla P90D with autosteer, summon mode, automatic parking, and ludicrous mode arrived to take the place of my three-year-old P85:… Read the rest

The Goldilocks Complexity Zone

FractalSince my time in the early 90s at Santa Fe Institute, I’ve been fascinated by the informational physics of complex systems. What are the requirements of an abstract system that is capable of complex behavior? How do our intuitions about complex behavior or form match up with mathematical approaches to describing complexity? For instance, we might consider a snowflake complex, but it is also regular in it’s structure, driven by an interaction between crystal growth and the surrounding air. The classic examples of coastlines and fractal self-symmetry also seem complex but are not capable of complex behavior.

So what is a good way of thinking about complexity? There is actually a good range of ideas about how to characterize complexity. Seth Lloyd rounds up many of them, here. The intuition that drives many of them is that complexity seems to be associated with distributions of relationships and objects that are somehow juxtapositioned between a single state and a uniformly random set of states. Complex things, be they living organisms or computers running algorithms, should exist in a Goldilocks zone when each part is examined and those parts are somehow summed up to a single measure.

We can easily construct a complexity measure that captures some of these intuitions. Let’s look at three strings of characters:

x = aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

y = menlqphsfyjubaoitwzrvcgxdkbwohqyxplerz

z = the fox met the hare and the fox saw the hare

Now we would likely all agree that y and z are more complex than x, and I suspect most would agree that y looks like gibberish compared with z. Of course, y could be a sequence of weirdly coded measurements or something, or encrypted such that the message appears random.… Read the rest

Entanglement and Information

shannons-formula-smallResearch can flow into interesting little eddies that cohere into larger circulations that become transformative phase shifts. That happened to me this morning between a morning drive in the Northern California hills and departing for lunch at one of our favorite restaurants in Danville.

The topic I’ve been working on since my retirement is whether there are preferential representations for optimal automated inference methods. We have this grab-bag of machine learning techniques that use differing data structures but that all implement some variation on fitting functions to data exemplars; at the most general they all look like some kind of gradient descent on an error surface. Getting the right mix of parameters, nodes, etc. falls to some kind of statistical regularization or bottlenecking for the algorithms. Or maybe you perform a grid search in the hyperparameter space, narrowing down the right mix. Or you can throw up your hands and try to evolve your way to a solution, suspecting that there may be local optima that are distracting the algorithms from global success.

Yet, algorithmic information theory (AIT) gives us, via Solomonoff, a framework for balancing parameterization of an inference algorithm against the error rate on the training set. But, first, it’s all uncomputable and, second, the AIT framework just uses strings of binary as the coded Turing machines, so I would have to flip 2^N bits and test each representation to get anywhere with the theory. Yet, I and many others have had incremental success at using variations on this framework, whether via Minimum Description Length (MDL) principles, it’s first cousin Minimum Message Length (MML), and other statistical regularization approaches that are somewhat proxies for these techniques.… Read the rest

A Soliloquy for Volcanoes and Nearest Neighbors

A German kid caught me talking to myself yesterday. It was my fault, really. I was trying to break a hypnotic trance-like repetition of exactly what I was going to say to the tramper’s hut warden about two hours away. OK, more specifically, I had left the Waihohonu camp site in Tongariro National Park at 7:30AM and was planning to walk out that day. To put this into perspective, it’s 28.8 km (17.9 miles) with elevation changes of around 900m, including a ridiculous final assault above red crater at something like 60 degrees along a stinking volcanic ridge line. And, to make things extra lovely, there was hail, then snow, then torrential downpours punctuated by hail again—a lovely tramp in the New Zealand summer—all in a full pack.

But anyway, enough bragging about my questionable judgement. I was driven by thoughts of a hot shower and the duck l’orange at Chateau Tongariro while my hands numbed to unfeeling arresting myself with trekking poles down through muddy canyons. I was talking to myself. I was trying to stop repeating to myself why I didn’t want my campsite for the night that I had reserved. This is the opposite of glorious runner’s high. This is when all the extra blood from one’s brain is obsessed with either making leg muscles go or watching how the feet will fall. I also had the hood of my rain fly up over my little Marmot ball cap. I was in full regalia, too, with the shifting rub of my Gortex rain pants a constant presence throughout the day.  I didn’t notice him easing up on me as I carried on about one-shot learning as some kind of trance-breaking ritual.… Read the rest

The Retiring Mind, Part 1: Clouds

goghcloudsI’m setting my LinkedIn and Facebook status to retired on 11/30 (a month later than planned, alas). Retired isn’t completely accurate since I will be in the earliest stage of a new startup in cognitive computing, but I want to bask ever-so-briefly in the sense that I am retired, disconnected from the circuits of organizations, and able to do absolutely nothing from day-to-day if I so desire.

(I’ve spent some serious recent cycles trying to combine Samuel Barber’s “Adagio for Strings” as an intro to the Grateful Dead’s “Terrapin Station”…on my Line6 Variax. Modulate B-flat to C, then D, then E. If there is anything more engaging for a retiring mind, I can’t think of it.)

I recently pulled the original kitenga.com server off a shelf in my garage because I had a random Kindle Digital Publisher account that I couldn’t find the credentials for and, in a new millennium catch-22, I couldn’t ask for a password reset because it had to go to that old email address. I swapped hard drives between a few Linux pizza-box servers and messed around with old BIOS and boot settings, and was finally able to get the full mail archive off the drive. In the process I had to rediscover all the arcane bits of Dovecot and mail.rc and SMTP configurations, and a host of other complexities. After not finding what I needed there, alas, I compressed the mail collection and put it on Dropbox.

I also retired a Mac Mini, shipping it off to a buy-back place for a few hundred bucks in Amazon credit. It had been a Subversion server that followed-up for kitenga.com, holding more than ten years of intellectual property in stasis.… Read the rest