Rise, Teleonomatons!

My essay for the Berggruen Prize this year. Of course, the organization missed an opportunity to drop down a staggering rabbit hole and lean into a whole new regime of neologistic energetics, but I do like the prize-winning essays!

Rise, Teleonomatons

Meaning entanglements

I can’t figure out what some statements about science mean, though I have a fair background in a range of scientific areas. Now, I can peruse highly technical papers, browse abstracts, interpret graphs, study conclusions, and typically do just fine. The professional stuff is a procession of arid facts and assumes the reader knows the basic definitions for things. It’s the popular versions of scientific insights that befuddle me—especially the definitions that try mightily to bridge meanings for learners. So do introductory texts. Light is a wave? Not exactly. Atoms are particles? Well, not quite, but they are small. Electrons orbit the nucleus? No, really, no. A force is an influence tending to change the motion of a body? OK, but what is an influence? People are influenced, aren’t they? Or under the influence.

And then there are texts like those of existential philosophers that leave me completely befuddled. What is this “Being” that they write about and how did it get so enlarged in significance, capitalized, and shoehorned by the translator into incomprehensible juxtapositions with other bulbous words?

It may be low pedantry to expect clarity from words and writing. We generally just roll with it and use the terms according to conventions inferred from reading and learning. We rush over the imperfect metaphorical bridges, the analogies, the similes. For physics, definitions are bound to the equations and measurement properties that accompany the words of description, and they become a semantic pier that is constantly informing our relationship with the ideas.… Read the rest

Be Persistent and Evolve

If we think about the evolution of living things we generally start from the idea that evolution requires replicators, variation, and selection. But what if we loosened that up to the more everyday semantics of the word “evolution” when we talk about the evolution of galaxies or of societies or of crystals? Each changes, grows, contracts, and has some kind of persistence that is mediated by a range of internal and external forces. For crystals, the availability of heat and access to the necessary chemicals is key. For galaxies, elements and gravity and nuclear forces are paramount. In societies, technological invention and social revolution overlay the human replicators and their biological evolution. Should we make a leap and just declare that there is some kind of impetus or law to the universe such that when there are composable subsystems and composition constraints, there will be an exploration of the allowed state space for composition? Does this add to our understanding of the universe?

Wong, et. al. say exactly that in “On the roles of function and selection in evolving systems” in PNAS. The paper reminds me of the various efforts to explain genetic information growth given raw conceptions of entropy and, indeed, some of those papers appear in the cites. It was once considered an intriguing problem how organisms become increasingly complex in the face of, well, the grinding dissolution of entropy. It wasn’t really that hard for most scientists: Earth receives an enormous load of solar energy that supports the push of informational systems towards negentropy. But, to the earlier point about composability and constraints, the energy is in a proportion that supports the persistence of systems that are complex.… Read the rest

Find the Alien

Assembly Theory (AT) (original paper) is some new theoretical chemistry that tries to assess the relative complexity of the molecular underpinnings of life, even when the chemistry might be completely alien. For instance, if we send a probe to a Jovian moon and there are new microscopic creatures in the ocean, how will we figure that out? In AT, it is assumed that all living organisms require a certain complexity in order to function since that is a minimal requirement for life on Earth. The chemists experimentally confirmed that mass spectrometry is a fairly reliable way of differentiating the complexity of living things and their byproducts from other substances. Of course, they only have Earthly living things to test, but they had no false positives in their comparison set of samples, though some substances like beer tended to be unusually high in their spectral analysis. The theory is that when a mass spec ionizes a sample and routes it through a magnetic and electric field, the complexity of the original molecules is represented in the complexity of the spray of molecular masses recorded by the detectors.

But what is “complexity” exactly? There are a great number of candidates, as Seth Lloyd notes in this little round-up paper that I linked to previously. Complexity intuitively involves something like a trade-off between randomness and uniformity, but also reflects internal repetition with variety. There is a mathematical formalism that in full attribution is “Solomonoff-Chaitin-Kolmogorov Complexity”—but we can just call it algorithmic complexity (AC) for short—that has always been an idealized way to think about complexity: take the smallest algorithm (in terms of bits) that can produce a pattern and the length of the algorithm in bits is the complexity.… Read the rest