A Soliloquy for Volcanoes and Nearest Neighbors

A German kid caught me talking to myself yesterday. It was my fault, really. I was trying to break a hypnotic trance-like repetition of exactly what I was going to say to the tramper’s hut warden about two hours away. OK, more specifically, I had left the Waihohonu camp site in Tongariro National Park at 7:30AM and was planning to walk out that day. To put this into perspective, it’s 28.8 km (17.9 miles) with elevation changes of around 900m, including a ridiculous final assault above red crater at something like 60 degrees along a stinking volcanic ridge line. And, to make things extra lovely, there was hail, then snow, then torrential downpours punctuated by hail again—a lovely tramp in the New Zealand summer—all in a full pack.

But anyway, enough bragging about my questionable judgement. I was driven by thoughts of a hot shower and the duck l’orange at Chateau Tongariro while my hands numbed to unfeeling arresting myself with trekking poles down through muddy canyons. I was talking to myself. I was trying to stop repeating to myself why I didn’t want my campsite for the night that I had reserved. This is the opposite of glorious runner’s high. This is when all the extra blood from one’s brain is obsessed with either making leg muscles go or watching how the feet will fall. I also had the hood of my rain fly up over my little Marmot ball cap. I was in full regalia, too, with the shifting rub of my Gortex rain pants a constant presence throughout the day.  I didn’t notice him easing up on me as I carried on about one-shot learning as some kind of trance-breaking ritual.… Read the rest

Lucifer on the Beach

glowwormsI picked up a whitebait pizza while stopped along the West Coast of New Zealand tonight. Whitebait are tiny little swarming immature fish that can be scooped out of estuarial river flows using big-mouthed nets. They run, they dart, and it is illegal to change river exit points to try to channel them for capture. Hence, whitebait is semi-precious, commanding NZD70-130/kg, which explains why there was a size limit on my pizza: only the small one was available.

By the time I was finished the sky had aged from cinereal to iron in a satire of the vivid, watch-me colors of CNN International flashing Donald Trump’s linguistic indirection across the television. I crept out, setting my headlamp to red LEDs designed to minimally interfere with night vision. Just up away from the coast, hidden in the impossible tangle of cold rainforest, there was a glow worm dell. A few tourists conjured with flashlights facing the ground to avoid upsetting the tiny arachnocampa luminosa that clung to the walls inside the dark garden. They were like faint stars composed into irrelevant constellations, with only the human mind to blame for any observed patterns.

And the light, what light, like white-light LEDs recently invented, but a light that doesn’t flicker or change, and is steady under the calmest observation. Driven by luciferin and luciferase, these tiny creatures lure a few scant light-seeking creatures to their doom and as food for absorption until they emerge to mate, briefly, lay eggs, and then die.

Lucifer again, named properly from the Latin as the light bringer, the chemical basis for bioluminescence was largely isolated in the middle of the 20th Century. Yet there is this biblical stigma hanging over the term—one that really makes no sense at all.… Read the rest

Machine Learning and the Coming Robot Apocalypse

Daliesque creepy dogsSlides from a talk I gave today on current advances in machine learning are available in PDF, below. The agenda is pretty straightforward: starting with some theory about overfitting based on algorithmic information theory, we proceed on through a taxonomy of ML types (not exhaustive), then dip into ensemble learning and deep learning approaches. An analysis of the difficulty and types of performance we get from various algorithms and problems is presented. We end with a discussion of whether we should be frightened about the progress we see around us.

Note: click on the gray square if you don’t see the embedded PDF…browsers vary.Read the rest

Evolutionary Optimization and Environmental Coupling

Red QueensCarl Schulman and Nick Bostrom argue about anthropic principles in “How Hard is Artificial Intelligence? Evolutionary Arguments and Selection Effects” (Journal of Consciousness Studies, 2012, 19:7-8), focusing on specific models for how the assumption of human-level intelligence should be easy to automate are built upon a foundation of assumptions of what easy means because of observational bias (we assume we are intelligent, so the observation of intelligence seems likely).

Yet the analysis of this presumption is blocked by a prior consideration: given that we are intelligent, we should be able to achieve artificial, simulated intelligence. If this is not, in fact, true, then the utility of determining whether the assumption of our own intelligence being highly probable is warranted becomes irrelevant because we may not be able to demonstrate that artificial intelligence is achievable anyway. About this, the authors are dismissive concerning any requirement for simulating the environment that is a prerequisite for organismal and species optimization against that environment:

In the limiting case, if complete microphysical accuracy were insisted upon, the computational requirements would balloon to utterly infeasible proportions. However, such extreme pessimism seems unlikely to be well founded; it seems unlikely that the best environment for evolving intelligence is one that mimics nature as closely as possible. It is, on the contrary, plausible that it would be more efficient to use an artificial selection environment, one quite unlike that of our ancestors, an environment specifically designed to promote adaptations that increase the type of intelligence we are seeking to evolve (say, abstract reasoning and general problem-solving skills as opposed to maximally fast instinctual reactions or a highly optimized visual system).

Why is this “unlikely”? The argument is that there are classes of mental function that can be compartmentalized away from the broader, known evolutionary provocateurs.… Read the rest

Active Deep Learning

BrainDeep Learning methods that use auto-associative neural networks to pre-train (with bottlenecking methods to ensure generalization) have recently been shown to perform as well and even better than human beings at certain tasks like image categorization. But what is missing from the proposed methods? There seem to be a range of challenges that revolve around temporal novelty and sequential activation/classification problems like those that occur in natural language understanding. The most recent achievements are more oriented around relatively static data presentations.

Jürgen Schmidhuber revisits the history of connectionist research (dating to the 1800s!) in his October 2014 technical report, Deep Learning in Neural Networks: An Overview. This is one comprehensive effort at documenting the history of this reinvigorated area of AI research. What is old is new again, enhanced by achievements in computing that allow for larger and larger scale simulation.

The conclusions section has an interesting suggestion: what is missing so far is the sensorimotor activity loop that allows for the active interrogation of the data source. Human vision roams over images while DL systems ingest the entire scene. And the real neural systems have energy constraints that lead to suppression of neural function away from the active neural clusters.

Read the rest

The Deep Computing Lessons of Apollo

Apollo 11With the arrival of the Apollo 11 mission’s 45th anniversary, and occasional planning and dreaming about a manned mission to Mars, the role of information technology comes again into focus. The next great mission will include a phalanx of computing resources, sensors, radars, hyper spectral cameras, laser rangefinders, and information fusion visualization and analysis tools to knit together everything needed for the astronauts to succeed. Some of these capabilities will be autonomous, predictive, and knowledgable.

But it all began with the Apollo Guidance Computer or AGC, the rather sophisticated for-its-time computer that ran the trigonometric and vector calculations for the original moonshot. The AGC was startlingly simple in many ways, made up exclusively of NOR gates to implement Arithmetic Logic Unit-like functionality, shifts, and register opcodes combined with core memory (tiny ferromagnetic loops) in both RAM and ROM forms (the latter hand-woven by graduate students).

Using NOR gates to create the entire logic of the central processing unit is guided by a few simple principles. A NOR gate combines both NOT and OR functionality together and has the following logical functionality:

[table id=1 /]

The NOT-OR logic can be read as “if INPUT1 or INPUT2 is set to 1, then the OUTPUT should be 1, but then take the logical inversion (NOT) of that”. And, amazingly, circuits built from NORs can create any Boolean logic. NOT A is just NOR(A,A), which you can see from the following table:

[table id=2 /]

AND and OR can similarly be constructed by layering NORs together. For Apollo, the use of just a single type of integrated circuit that packaged NORs into chips improved reliability.

This level of simplicity has another important theoretical result that bears on the transition from simple guidance systems to potentially intelligent technologies for future Mars missions: a single layer of Boolean functions can only compute simple things.… Read the rest

Trees of Lives

Tree of LifeWith a brief respite between vacationing in the canyons of Colorado and leaving tomorrow for Australia, I’ve open-sourced an eight-year-old computer program for converting one’s DNA sequences into an artistic rendering. The input to the program are the allelic patterns from standard DNA analysis services that use the Short Tandem Repeat Polymorphisms from forensic analysis, as well as poetry reflecting one’s ethnic heritage. The output is generative art: a tree that overlays the sequences with the poetry and a background rendered from the sequences.

Generative art is perhaps one of the greatest aesthetic achievements of the late 20th Century. Generative art is, fundamentally, a recognition that the core of our humanity can be understood and converted into meaningful aesthetic products–it is the parallel of effective procedures in cognitive science, and developed in lock-step with the constructive efforts to reproduce and simulate human cognition.

To use Tree of Lives, install Java 1.8, unzip the package, and edit the supplied markconfig.txt to enter in your STRs and the allele variant numbers in sequence per line 15 of the configuration file. Lines 16+ are for lines of poetry that will be rendered on the limbs of the tree. Other configuration parameters can be discerned by examining com.treeoflives.CTreeConfig.java, and involve colors, paths, etc. Execute the program with:

java -cp treeoflives.jar:iText-4.2.0-com.itextpdf.jar com.treeoflives.CAlleleRenderer markconfig.txt
Read the rest

Inching Towards Shannon’s Oblivion

SkynetFollowing Bill Joy’s concerns over the future world of nanotechnology, biological engineering, and robotics in 2000’s Why the Future Doesn’t Need Us, it has become fashionable to worry over “existential threats” to humanity. Nuclear power and weapons used to be dreadful enough, and clearly remain in the top five, but these rapidly developing technologies, asteroids, and global climate change have joined Oppenheimer’s misquoted “destroyer of all things” in portending our doom. Here’s Max Tegmark, Stephen Hawking, and others in Huffington Post warning again about artificial intelligence:

One can imagine such technology outsmarting financial markets, out-inventing human researchers, out-manipulating human leaders, and developing weapons we cannot even understand. Whereas the short-term impact of AI depends on who controls it, the long-term impact depends on whether it can be controlled at all.

I almost always begin my public talks on Big Data and intelligent systems with a presentation on industrial revolutions that progresses through Robert Gordon’s phases and then highlights Paul Krugman’s argument that Big Data and the intelligent systems improvements we are seeing potentially represent a next industrial revolution. I am usually less enthusiastic about the timeline than nonspecialists, but after giving a talk at PASS Business Analytics Friday in San Jose, I stuck around to listen in on a highly technical talk concerning statistical regularization and deep learning and I found myself enthused about the topic once again. Deep learning is using artificial neural networks to classify information, but is distinct from traditional ANNs in that the systems are pre-trained using auto-encoders to have a general knowledge about the data domain. To be clear, though, most of the problems that have been tackled are “subsymbolic” for image recognition and speech problems.… Read the rest