Seth Lloyd and I have rarely converged (read: absolutely never) on a realization, but his remarkable 2013 paper on free will and halting problems does, in fact, converge on a paper I wrote around 1986 for an undergraduate Philosophy of Language course. I was, at the time, very taken by Gödel, Escher, Bach: An Eternal Golden Braid, Douglas Hofstadter’s poetic excursion around the topic of recursion, vertical structure in ricercars, and various other topics that stormed about in his book. For me, when combined with other musings on halting problems, it led to a conclusion that the halting problem could be probabilistically solved by an observer who decides when the recursion is too repetitive or too deep. Thus, it prescribes an overlay algorithm that guesses about the odds of another algorithm when subjected to a time or resource constraint. Thus we have a boredom algorithm.
I thought this was rather brilliant at the time and I ended up having a one-on-one with my prof who scoffed at GEB as a “serious” philosophical work. I had thought it was all psychedelically transcendent and had no deep understanding of more serious philosophical work beyond the papers by Kripke, Quine, and Davidson that we had been tasked to read. So I plead undergraduateness. Nevertheless, he had invited me to a one-on-one and we clashed over the concept of teleology and directedness in evolutionary theory. How we got to that from the original decision trees of halting or non-halting algorithms I don’t recall.
But now we have an argument that essentially recapitulates that original form, though with the help of the Hartmanis-Stearns theorem to support it. Whatever the algorithm that runs in our heads, it needs to simulate possible outcomes and try to determine what the best course of action might be (or the worst course, or just some preference). That algorithm is in wetware and is therefore perfectly deterministic. And, importantly, quantum indeterminacy doesn’t rescue us from the free-will implications of that determinism at all; randomness is just random, not decision-making. Instead, the impossibility of assessing the possible outcomes comes from one algorithm monitoring another. In a few narrow cases, it may be possible to enumerate all the stopping results of the enclosed algorithm, but in general, all you can do is greedily terminate branches in the production tree based on some kind of temporal or resource-based criteria,
Free will is neither random nor classically deterministic, but is an algorithmic constraint on the processing power to simulate reality in a conscious, but likely deterministic, head.